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Abstract

Thermally developing laminar flow of a dipolar fluid in a duct (pipe or channel) including axial conduction (Graetz

problem extended) is investigated. The solutions are based on a self-adjoint formalism resulting from a decomposition

of the convective diffusion equation for laminar flow into a pair of first-order partial differential equations. This ap-

proach, which is based on the solution method of Paputsakis et al. for a laminar pipe flow of a Newtonian fluid, is not

plagued by any uncertainties arising from expansions in terms of eigenfunctions belonging to a non-self-adjoint

operator. Then the eigenvalue problem is solved by means of the method of the weighted residual. Following this, the

effect of the dipolar constant on the Nusselt number and temperature field are discussed in detail. Finally, it is shown

that the Newtonian solution is a special case of the present result.

� 2003 Published by Elsevier Ltd.
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1. Introduction

The theory of dipolar fluids is the simplest example of

a class of non-Newtonian fluids called multipolar fluids.

Bleustein and Green [1] studied the theory of dipolar

fluids. Cowin [2] pointed out that dipolar fluids are a

special case of fluids with deformable microstructure.

Erdogan [3] has stated that this microstructure may

consist of such entities as bubbles, atoms, particulate

matter, ions or other suspended bodies. Straughan [4]

has suggested that the theory of dipolar fluids should be

capable of describing fluids made up of long molecules

or (possibly) a suspension of long molecular particles. In

a series of paper, Puri and Jordan [5–7], Jordan and Puri

[8] have studied Stokes’ first, second and unsteady

Couette flow problem analytically for dipolar fluid

respectively.

In a recent paper [9], Necas and Shilhavy examined

the physical theory of multipolar fluids; where the the-

ory is shown to be compatible with the principles of

thermodynamics, as well as with the principles of
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material frame indifferences. In a follow up paper [10],

Bellout et al. have explored some of the consequences of

the theory formulated in [9]. The special flows examined

in [10] relate to the simplest linear multipolar model

which consists with the general formulation in [10],

namely that of isothermal, incompressible, dipolar fluid;

the specific constitutive relations are

sij ¼ �pdij þ 2l0eij � 2l1Deij ð1Þ

sijk ¼ 2l1

oeij
oxk

ð2Þ

where sij is the viscous tensor, sijk the first multipolar

stress tensor, p the pressure, D is the Laplacian operator,

eij ¼
1

2

ovi
oxj

�
þ ovj

oxi

�
ð3Þ

the components of the rate of deformation tensor, cor-

responding to the velocity field vi, i ¼ 1,2,3 and the

constant l0, l1 > 0; which is required by consistency

with the second law of thermodynamics in the form of

the Clausius–Duhem inequality.

The analytical hydrodynamic solutions of the dipolar

fluid pipe and channel flows were derived by Bleustein
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Nomenclature

T ðn; xÞ temperature

T0 entrance temperature

T1 final temperature

k1 thermal conductivity

c specific heat of fluid

l dipolar constant

Tb bulk temperature

Nu Nusselt number

Pe Peclet Number

uðyÞ and uðrÞ velocity

Greek symbols

n coordinate

q density

l0, l1 viscosity coefficient

X axial energy

kj eigenvalue
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and Green [1], Erdogan and Gurgoze [11] and Bellout

et al. [10] respectively.

In this report, thermally developing laminar flow

(Graetz problem extended) of a dipolar fluid in a duct

(pipe or channel) including axial conduction is analyzed

and the effect of the dipolar constant on the temperature

field and Nusselt number delineated. Literature review

reveals that this thermally developing flow has not been

studied before. In fact, the Graetz problem where the

axial conduction is neglected has not been studied. This

gives the motivation for the present work where

approximate analytical solution is given for temperature

field and heat conduction, which show the effect of the

dipolar constant on the temperature distribution and

heat conduction (Nusselt number), we also show that

Newtonian solution is a special case of our work.
ξ
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Fig. 1. Geometrical configuration and coordinate system.
2. Formulation of the problem

The flow is assumed to be steady and laminar. The

fluid properties are taken as constant and so no depen-

dence of properties and model parameters on tempera-

ture will be considered. The boundary condition is that of

an imposed constant temperature at the duct wall. Two

flow geometries are considered, namely the plane case

(channel flow) and the axisymmetric case (pipe flow), but

the detail of derivation is given only pipe flow. At the end

of the paper the result is given for channel flow as well.

It is also assumed that Fourier’s law of heat con-

vection is valid for the dipolar fluid [4]. Under these

assumptions the hydrodynamic and the thermal prob-

lems are fully decoupled. The hydrodynamic solution is

presented first, followed by the solution method and

approximate analytical solution for the Graetz problem,

which is the main focus of present report.

2.1. Hydrodynamic solution

The hydrodynamic solution for the pipe flow

(Poiseuille flow, where velocity field has the form
v ¼ uðrÞez) was derived by Bleustein and Green [1]. They

assumed finite velocity along the center line ðr ¼ 0Þ of

cylinder with srað1Þ ¼ Ma, a ¼ r; h; z, beside the bound-

ary conditions uð1Þ ¼ u00ð1Þ ¼ 0 and their solution for

Mz ¼ 0 can be written as

uðrÞ ¼ 1� r2 þ 2l2
I0 1

l

� �
� I0 r

l

� �� �
lI1 1

l

� �
� I0 1

l

� �� � ð4Þ

where Ii, i ¼ 0, 1 is the modified Bessel function of the

first kind. For the plane case the velocity field has the

form v ¼ uðyÞi; ð�16 y6 1Þ and we have the analytical

solution as

uðyÞ ¼ 1� y2 � 2l2 þ 2l2
cosh y

l

� �
cosh 1

l

� � ð5Þ

where we used the dimensionless variables and

l2 ¼ l1=l0 (dipolar constant).

2.2. Heat transfer problem

Fig. 1 shows the geometrical configuration and

coordinate system. The characteristic length L denotes
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half of the channel height h for the flow in a parallel

plate channel or the radius R for the flow in a pipe. It is

assumed that the laminar flow enters the duct with a

hydrodynamically fully developed and with a uniform

temperature profile T0 for x ! �1. For x ! 1 the flow

attains the uniform temperature T1. Under the assump-

tion of constant fluid properties, the energy equation is

given by

k1
1

rk
o

on
rk
oT
on

� �
¼ qcu

oT
ox

� k1
o2T
ox2

; ð6Þ

where k1, q and c stand for the thermal conductivity,

density and specific heat of the fluid.

The boundary conditions for our problem are:

nðr for pipe flow; y for planar flowÞ ¼ L: T ¼ T0
for x6 0 and T ¼ T1 for x > 0;

n ¼ 0:
oT
on

¼ 0; lim
x!�1

T ¼ T0; lim
x!1

T ¼ T1

and the index k which appears in Eq. (6) is equal to 0

and 1 for the planar case, and for the circular pipe case,

respectively.

Next, we non-dimensionalise Eq. (6) by scaling lengths

with characteristic length (n� ¼ n=L, x� ¼ x=ðLPeÞ, Pe ¼
UL=k1), velocity with the average velocity ðu� ¼ u=UÞ and
temperature as

T � ¼ T � T1
T0 � T1

; ð7Þ

where T0 represent the entrance temperature. Then, the

resulting dimensionless energy equation is

1

r�
o

or�
r�
oT �

or�

� �
þ 1

Pe2
o2T �

ox�2
¼ u�

oT �

ox�
ð8Þ

which expresses the so-called Graetz problem extended.

The dimensionless boundary conditions are

n ¼ 1: T � ¼ 1; x60 and T � ¼ 0; x > 0;

n ¼ 0: oT �=on ¼ 0 lim
x!¼1

T � ¼ 1 and limx!1T � ¼ 0

ð9Þ
3. Method of solution

First, as discussed in detail in [12], it is easy to show

that the partial differential Eq. (8) can be decomposed as

(omitting the star)

o

ox

T

X

� �
¼

Pe2u
a1ðnÞ

� Pe2

rka1ðnÞ
o

on

rka2ðnÞ o
on 0

2
64

3
75 T

X

� �
or

o

ox
Fðx; nÞ ¼ LFðx; nÞ ð10Þ
where the function Xðx; nÞ which can be called the axial

energy flow through a cross sectional area of the height n
is defined by

X ¼
Z n

0

uT
�

� 1

Pe2
a1ðnÞ

oT
ox

�
rk dn ð11Þ

Since the Eq. (8) is non-self-adjoint, this would give an

incomplete set of eigenvalues for the solution. But, the

remarkable feature of the operator L is that it gives rise

to a self-adjoint operator even if the original equation is

not self-adjoint. This is the result of inner product of two

vectors where we define inner product of two vectors as

hf ; gi �
Z 1

0

a1ðnÞrk
Pe2

f1ðnÞg1ðnÞ
�

þ 1

a2ðnÞrk
f2ðnÞg2ðnÞ

�
dn

ð12Þ

and the domain for L is given by

DðLÞ ¼ fU 2 H : LU 2 H ;U2ð1Þ ¼ U2ð0Þ ¼ 0g ð13Þ

Then it is easy to show that L is a symmetric operator

in H , where H is an appropriate Hilbert space. For a

detailed explanation see [12] or [13]. We note that the

expression reduces to the pipe flow for k ¼ 1, n ¼ r,
a1ðnÞ ¼ a2ðnÞ ¼ 1 and reduces to parallel plate channel

for k ¼ 0, n ¼ y, a1ðnÞ ¼ a2ðnÞ ¼ 1. Thus a self-adjoint

eigenvalue problem associated with the equation is given

by

LUj ¼ kjUj ð14Þ

where Uj denotes the eigenvector corresponding to the

eigenvalue kj. Expanding Eq. (14) and eliminating Uj2,

we obtain

½rka2ðnÞU0
j1�

0 þ rk
kja1ðnÞ
Pe2

�
� u

�
kjUj1 ¼ 0 ð15Þ

where we used rka2ðnÞU0
j1 ¼ kjUj2 and the equation is to

be solved with the boundary conditions:

U0
j1ð0Þ ¼ 0; Uj1ð1Þ ¼ 0 ð16Þ

and we have the normalizing condition

Uj1ð0Þ ¼ 1 ð17Þ

which has been used for the eigenvectors. The solution

of the equation possesses both positive and negative

eigenvalues. This is because the operator L is neither

positive nor positive definite. But all eigenvalues are real,

since the operator is symmetric, and we can see from

the Eq. (10), if kja1ðnÞ=Pe2 ! 0, the eigenvalue problem

reduces to the parabolic classical Greatz problem.

We now consider the solution of Eq. (10). For this,

we first take the inner product of both sides with Uj,

which gives

o

ox
hF;Uji ¼ kjhF;Uji þ hðxÞUj2ð1Þ; ð18Þ
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where hðxÞ is defined as

hðxÞ ¼ 1; x6 0

0; x > 0

�
ð19Þ

and where we used the following equality

hLF;Uji ¼ hF;LUji þ hðxÞUj2ð1Þ ð20Þ

which is a consequence of (12). Then Eq. (18) has the

general solution

hF;Uji ¼ Akje
kjx þ ekjx

Z x

e�kjsUj2ð1ÞhðsÞds; ð21Þ

where Akj is the integration constant. Applying of the

boundary condition (9) yields the solution

hF;Uji ¼ ek
þ
j x
Z x

1
e�kþj sUj2ð1ÞhðsÞds

þ ek
�
j x

Z x

�1
e�k�j sUj2ð1ÞhðsÞds ð22Þ

Finally this expression is used in the eigenfunction

expansion

T ðn; xÞ
Xðx; nÞ

� �
¼

X
j

hF;Uji
kUjk2

UjðnÞ ð23Þ

where the norm calculated from the Eq. (12). If we

explicitly distinguish in Eq. (23) positive and negative

eigenvalues, we obtain:

T ðn; xÞ ¼ 1þ
X1
j¼1

Uþ
j2ð1ÞUþ

j1ðnÞ
kþj kUþ

j k
2

eðk
þ
j xÞ for x6 0; ð24Þ

T ðn; xÞ ¼ �
X1
j¼1

U�
j2ð1ÞU�

j1ðnÞ
k�j kU�

j k
2

eðk
�
j xÞ for x > 0 ð25Þ

Further the above equations can be written as (The

reader is referred to Weigand et al. [13] for further de-

tails)

T ðn; xÞ ¼ 1þ
X1
j¼1

Aþ
j U

þ
j1ðnÞe

ðkþj xÞ for x6 0; ð26Þ

T ðn; xÞ ¼
X1
j¼1

A�
j U

�
j1ðnÞeðk

�
j xÞ for x > 0 ð27Þ

where the coefficient A�
j are given by

A�
j ¼

U�
j2ð1ÞU�

j1ðnÞ
k�j kU�

j k
2

" #
ð28Þ

The bulk temperature Tb and the local Nusselt number

Nu are then determined as

Tb ¼
Z 1

0

uTrk dn
Z 1

0

urk dn
�

; ð29Þ
Nu ¼ � D
oT
on

� �
n¼L

,
ðTb � T1Þ ð30Þ

where D is the hydraulic diameter of the duct. Intro-

ducing the dimensionless variables given by Eq. (7) into

the Eqs. (29) and (30) and using the temperature dis-

tributions (26) and (27), we obtain the following

expressions for bulk temperature and Nusselt number

and for the pipe flow:

T �
b ¼ 2þ

P1
j¼1 A

þ
j

U0þ
j1 ð1Þ
kþj

þ
kþj
Pe2

Z 1

0

Uþ
j1ðrÞrdr

( )
expðkþj xÞ

BðlÞ ;

Nu ¼ �
2
P1

j¼1 A
þ
j U

0þ
j1 ð1Þ expðk

þ
j xÞ

T �
b

9>>>>>>=
>>>>>>;

for x60 ð31Þ

where BðlÞ is found to be

BðlÞ ¼ 1

2
þ

4l2I0 1
l

� �
lI1 1

l

� �
� I0 1

l

� �� 4l3I1 1
l

� �
lI1 1

l

� �
� I0 1

l

� � ð32Þ

and

T �
b ¼

P1
j¼1 A

�
j

U0�
j1 ð1Þ
k�j

þ
k�j
Pe2

Z 1

0

U�
j1ðrÞrdr

( )
expðk�j xÞ

BðlÞ ;

Nu ¼ �
2
P1

j¼1 A
�
j U

0�
j1 ð1Þ expðk

�
j xÞ

T �
b

9>>>>>>=
>>>>>>;

for x > 0 ð33Þ
4. Result and discussion

4.1. Numerical procedure and accuracy

We used the spectral Galerkin method to solve the

eigenvalue problem (15)–(17). For this purpose, we used

cos 1
2
ð2i� 1Þpn

	 

as basis functions, which satisfy the

boundary condition automatically. The resulting alge-

braic quadratic eigenvalue problem is solved to find the

eigenvalues as well as the eigenvectors of the eigenvalue

problem. In the case of thermally developing laminar

flow of a Newtonian fluid in a pipe, we compared our

results with that of the analytical one. We observed that

our results are accurate up to 10 decimal place which

give us confidence in the accuracy of our result for the

dipolar fluid. In general, we found that a larger number

of eigenmodes required with the decrease of Pe and jxj as
indicated in [14].

4.2. Results

For small values of dipolar constant, it is well

known from the work of Bellout et al. [10] that fully
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Fig. 2. The effect of the dipolar constants on the Nusselt
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Fig. 5. The effect of the dipolar constants on the temperature

field for Pe ¼ 100.
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developed velocity profile for dipolar fluid approaches

the velocity profiles for Newtonian fluid. As expected,

we found that the results for the Newtonian case

(l ¼ 0) were close to the results for small values of the

dipolar constant l (this corresponds to the case l ¼ 0:01
in Fig. 2). We also obtained the Graetz problem (no

effect of axial conduction) for large enough Peclet

number. To illustrate this case, we select Peclet number

as 1000. Since there is no difference between the result

for the Graetz problem (no effect of axial conduction)

and Pe ¼ 1000. We only examine the case of Pe ¼ 1000
and this case is given in Fig. 2, which also shows the

effect of the dipolar constant on the Nusselt number.

But it is seen also from the Figs. 3 and 4, that, if we

increase the value of the dipolar constant, we obtain

the temperature distribution which is markedly differ-

ent from that of the Newtonian case. This is shown in

Figs. 3 and 4 respectively. It is seen from the Fig. 4

that dipolar constant l > 1 is not relevant for the

applications (since it shows almost no temperature

changes inside fluid). Hence, we consider the value of

the dipolar constant between 0 and 1. If we decrease

the value of the Peclet number, we expect the effect of
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the axial conduction on the temperature distribution as

well as on the Nusselt number increase. This is shown

in the Figs. 5–8. for Pe ¼ 100 and 10 respectively.

Again, the effect of the dipolar constant can be seen in

these figures and we see that this effect can not be

excluded. This also shows the relevance of the consti-

tutive equation for dipolar fluids. Finally, the effects of

the dipolar constant on the Graetz problem for the

channel flow are shown in Fig. 9. We also note that we

observed similar effect of the dipolar constant for the

Graetz problem extended (including the axial conduc-

tion effect) for the channel case.
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